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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2669

APPROXIMATE THEORY FOR CALCULATION OF LIFT
OF BODIES, AFTERBODIES, AND COMBINATTONS OF BODIES

By Barry Moskowitz

SUMMARY

An expression is developed for the 1ift of a slender afterbody in
terms of the "slender-body" approximate potential at the after end in
conjunction with a suitably calculated value of the potential at the
forward end. The failure of the usual "slender-body" theory to predict
any 1lift on a slender cylindrical afterbody is thereby corrected. The
same expression is used to compute the part of the interference 1lift
‘generated by the presence of a neighboring body, due to the interference
upwash. Another expression is developed to compute the remainder of
the interference 1ift, due to an interference pressure gradient. The
1lift is determined for a cone~cylinder body, a cylindrical afterbody
of & slender wing-body combination, and three combinations of bodies
to illustrate the method.

INTRODUCTION

In the search for better aerodynamic configurations for supersonic
flight, the missile shape has become more complex. One of the problems
arising is the effect of interference between bodies which occurs, for
example, when the propulsive unit is mounted external to the fuselage.

An adaptation of slender-body theory for obtaining a simple approxima-

tion of the interference 1lift between such bodies was developed at

the NACA Lewis laboratory and is presented in this report. This approxi-
mate theory is also applied for the calculation of the 1lift of an afterbody,
which is herein defined as the portion of the body behind the wing trailing
edge for a wing-body combination or as the portion of the body aft of the
nose section for a wingless body.

Slender-body theory as originally developed by Munk in studying
the 1ift of airships (reference l) has proved useful in predicting the
1ift of low-aspect-ratio wings, slender bodies, and slender wing-body
combinations at supersonic speeds (references 2, 3, and 4). However,
slender-body theory yields the unrealistic result that a cylindrical
afterbody of a wing-body combination and a cylindrical afterbody of
a body carry no 1lift.

Although slender-body theory may be grossly in error on the 1lift
of a slender afterbody, the theory closely approximates the correct
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value of the part of the surface potential at the rear of the afterbody I

proportional to the angle of attack. An expression utilizing this fact
is developed herein for the afterbody 1lift in terms of the slender-body
potential at the after end in conjunction with a suitably calculated
value of the potential at the forward end. The more accurate methods of
calculation of greater labor (for example, linearized theory) are thereby
limited to the forward or nonslender portion of the body.

The same expression is used to compute the part of the interference
1ift of bodies of revolution due to the upwash field generated by each
body on the other. Another interference effect considered herein is
that due to the variable pressure field generated by one body in the
vicinity of the other, which results in a buoyant force.

As examples of the method, the 1ift of a cone-cylinder body, the
1ift of a cylindrical afterbody of a slender wing-body combination,
and the 1ift of three combinations of bodies are determined.

ANALYSIS
Basic Equations

Consider a slender body of revolution at zero angle of attack in
a uniform supersonic stream of velocity U. There will be a certain
disturbance velocity field and an associated velocity potential produced
by the body. Because of symmetry, this velocity field will give rise
to no 1lift.

Now let the body be given a small angle of attack o« and be subject,
in addition, to a small disturbance field (ﬁ,?,ﬁ) generated by a second
body (fig. 1). (The symbols used herein are defined in appendix A.)

The first body will develop an additional velocity potential due to «
and to the disturbance field. If v and W are suitably restricted

it is shown in appendix B that to a certain accuracy (a) only that part
of this additional potential due to o and to w will give rise to

1lift, and (b) cross product terms involving both potentials may be
neglected for the 1lift. Call this lift~producing incremental potential @.

Equations of motion and boundary condition. - The incremental
potential ¢ is presumed to satisfy the governing equation for small-
disturbance, isentropic irrotational flow

=0 (l)

In addition, ¢ 1is specified to satisfy the boundary condition that the
eross flow, Uo + w, must be canceled at the surface of the body; that is,

L
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Qpr)r=R = - (Ua + w)sin 6 (2)

on the body. This boundary condition is linearized, not exact.

Pressure coefficient. - That part ©®p of the entire pressure
increment Ap which contributes to the 1lift is, to the present accuracy,
given by the linearized Bernoulli equation ’

%E ) -2(¢}%+ u) ()

Specifically, the accuracy is such that all terms of order « dR/dx or
(d.R/d.x)Z, but no higher, which can contribute to the 1lift will be
included; this result is proved in appendix B.

Lift. - The axis of the slender body under consideration will _
always be taken parallel to the x-axis. For simplicity the sidewash v
and w generated by the interfering body are considered to vary only
with the coordinate x in the general vicinity of the primary body;
this restriction is the one mentioned earlier.  (The sidewash will not
be considered further because it contributes nothing to the 1lift
(see appendix B)). The approximation should be valid if the bodies
are not too close to each other. ’

The 1lift of the body may be obtained by integrating the component
of the pressure in the 1lift direction around and along the body. The
expression for the lift is

Xo 2n an Xo
o) op
Lift=-qf f -—P-sinQRded_)cz—qf sin@d@f R 2£ gx
qQ q

(4)

where R 1is the radius of the body and x; and xp are the x-coordinates
at the start and base of the body, respectively.

Substituting equation (3) into equation (4) gives

2n X9 Xo 2n
. 2q . 2q = .
L1ft=? sin 6 46 Ru dx + = R dx u sin 6 46  (5)
« L | , + L B _
NV v

The second integral in equation (5) represents the 1ift of a body _
immersed in a variasble pressure field and may be considered as a buoyant
force. The integral will be discussed in detail in the section on
interference between bodies in combination.
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Development based on first integral in 1ift equation. - This
section is concerned with the transformation of the first integral in
equation (5) into a more useful form involving the surface potential.
Hereinafter this first integral will be called L.

For constant 6, the quantity Ru dx may be written

dR dR
Rudx =R & - Rle,dr) = a(re) - @ — dx - R(®) . = dx (6)

Insertion of equation (6) into the first integral of equation (5) yields

> 21 Xo iR

= 24 in 6 - - + 98 ax Y ae

L= f sin 64 RgPp - Ry f EP R(‘l’r)mR]dx (7
0 Xl

The equation for the upwash perturbation velocity is
w= 0. sin 6 + = 9, cos 6 (8)
r r e

Substitution of the value of ¢, sin 6 from this equation into equa-
tion (7) results, upon simplification, in the following equation for L:

2 X2 21
2q . 2q f dR J‘
= = R - R9,) sin 6 48 - = R — dx w 46 +
L=7 (Rooz 191) U dx ;

X1
xz 21
ng @axf (e cos 6) 44
8] dx d0
Xl 0

which reduces to

2n > X0 21
2q q dR
= == Ro®, - R, sin 6 46 - — R—dx‘rI w 46 9
L U ‘Iw ( AL 1 1) T Jq ax ( )
0] Xy 0

because the integral in the last term is zero. The first integral in
equation (9) may be integrated directly because, as shown in appendix B,
the potential is of the form

¢ = sin 6 G(x,r)

2567
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Equation (9) then becomes

R, - RO % i
. - 2o B 1’1 2g R@dx\r w do (10)
dx
0

U sin @ 7?

X
This eQuation is fundamental for subsequent developments.

If @ and @y, the values of surface potential at the forward and

after ends, respectively, of the section of the body under consideration,
are known as well as the vertical component w of the body perturbation
velocity, the lift may be obtained from equation {10). In the following
sections, procedures are developed for determining the 1lift for cases

in which the integration of the second term in equation (10) is negligi-
ble or zero. (When the second term is not zero, it is probably simpler

to obtain the 1ift from equation (5) because the same type of computation
is required to determine the w-distribution as is needed to determine the
u-distribution.) For these cases, ¢2 is assumed to be the potentlal glven
by slender-body theory. I

Slender-body theory for variable cross flow. - The central approxi-
mation of slender-body theory is the following: In any plane x = con-
stant, the value of the potential increment @ associated with the
cross flow is the two-dimensional potential of a cylinder having the
local radius and moving with the local cross-stream velocity. For
supersonic flow with uniform cross flow (that is, a fixed angle of
attack and no variable interference upwash), this result is derived in
reference 3 by taking the limit of the linearized value for radius
approaching zero. The corresponding result will now be derived in
similar fashion for the more general case of variable cross flow.

The potential in integral form may be written

x=-Br

sin 0 gE)(x - E)aE
o= —— (11)
i ‘g Y(x - E)2 - p2rZ

The expression may be interpreted as the potential of a distribution

of doublets of strength ‘Iwg(x)dx per unit length (g(x) = g;'(x) of
appendix B). "

When the distribution function for the limiting case R+ 0 is
related to the local cross flow as in reference 3, there results

g(x) = ad; Rz(x) [UCL + FCX)]} {(12)
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Inserting this value of g(x) into equation (11) for the potential,
applying the slender-body approximation (radius approaches zero) , and
integrating yleld

- R sin 6
@ = [Uor, + w(x)] — (13)
On the body (r = R), equation (13) reduces to

Q= [Uor. + :v_r(x)] R sin 6 (14)

Equations (13) and (14) represent the slender-body approximation for
the case of a variable cross flow w(x).
25

Demonstration that f w d8 = 0 for slender body section. -

0
The 1ift equation (10) is particularly simple when the second term

reduces to zero. This reduction ocecurs when eithgr R = constant (the
7

section under consideration is cylindrical) or f wdé = 0. It will
2 0
now be shown that f w d8 = 0 is obtained when the afterbody is suf-
: 0]
ficiently slender that slender-body theory may be applied.

The upwash may be obtained by inserting equation (13) into equa-
tion (8) and performing the indicated differentiation. The result is

W [Uon + W(x)] RZ2/r2(cos?0 - s5in20) (15)

or on the body (r = R},

W [Ua + —G(x)] (cos20 - sin®e) (186)

which immediately leads to the result
2%

f wdd =0

0

wherever slender-body theory is applicable.

2367
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Applications

Slender pointed body of revolution. - If, in addition to being
slender everywhere, the body of revolution tapers to a point at the
' 2x

forward end, then Jq wdf =0 and @, = 0. Thus the 1lift equa-

' 0
tion (10) reduces to

2nqRo®
L = 292

= 17
U sin @ ( )

With the slender-body value for ®, (equation (14)), the final result is

L = 2qA, (a + %) (18)

L]
where A, 1is the area of the base of the body. Thus the 1lift of a

pointed slender body in an upwash field depends on only the upwash and
the cross-sectional area at the base.

Open-nose bodies and cylindrical afterbodies of bodies. ~ For a
circular cylinder (dR/dx = O), the 1ift from equation (10) becomes

L

_ 2qmR ®2 = @1 '(19)
U sin 6

If the potential at the base of the cylinder is given by the slender-
body value (equation (14) with W = 0), the lift is the same as that of
a slender-pointed body with the same base area because ¢l is zero.

Indication of the extent to which use of the slender-body value is
Justified may be obtained from reference 5 where an exact solution of

the linearized differential equation (equation (1)) has been obtained
using operational methods for the flow past finite bedies. Ward's
results for the 1ift of a cylinder of length 10 indicate that the

slender-body lift is realized within 2 percent for 1,/pR> 8.

The 1lift of a cylindrical afterbody of a body is given by equa-
tion (19) where @, is the potential on the body at the start of the

aftersection. The 1lift of the afterbody would be zero if Ql and

¢ were both taken to be the slender-body values because ¢l would
then equal @2. To obtain a more accurate value for the 1lift of the
afterbody, 9 should be obtained by more exact methods, such as the
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stepwise procedure of reference 3. 1In the EXAMPLES section, the 1lift
of a cone-cylinder model is computed as a function of the cone angle by

this procedure.

TIf in the vicinity of the lip the body is assumed to be quasi~
cylindrical (dR/dx = 0), the second term in equation (10) will be
approximately zero; if the bo%y is slender, the term will still be zero

7
farther downstream because w d6 = 0 as shown. Lighthill points

0
out in reference 6 that the discontinuity at the 1lip of an open-nose

body affects only the region directly behind it for a distance of the
order of the diameter of the body. The flow then behaves as if the
open-nose body were a pointed body with a continuous slope. By use

of operational methods, reference 6 shows that the 1ift of an open-nose
body of sufficiently large fineness ratio is given by the slender-body
value.

Afterbodies of wing-body combinations. - The analysis used for a
body of revolution may be considered to apply equally well to a wing-
body combination provided the potential ¢ 1is no longer restricted
to the form sin 6 G(x,r). Consequently all the earlier formulas not
depending on this restriction still apply. In particular, equation (9)
must now be used in place of equation (10). The 1ift of the portion
of the body behind the wing trailing edge of a wing-body combination
may be determined from equation (9) with ¢, equal to the potential

on the body at the wing trailing edge. In order to satisfy the basic
assumption of constant interference downwash and sidewash in each
transverse plane around the body (due in this case to the wing and its
wake), the diameter of the afterbody should be small compared with the
wing span. Reference 7 gives the complex stream potential for a slender
body of revolution with small-aspect-ratio triangular wings mounted on
the cylindrical part of the body. The velocity potential is obtained
by evaluating the complex stream potential on the body since the stream
function is zero on the body. The result is

2
2
o) = Ua ’\[(b + Bb—> - 4R® cos®0 - R sin 6 (20)

where b is the maximum semispan of the wing and R is the radius of
the cylindrical part of the body. The slender-body approximation to
the surface potential at the base of the afterbody is (equation (14))

9, = (Ua + Wy) Ry sin 6

1Qc2
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where ;2 is the induced upwash velocity generated by the wing. - These
values of @, and ¢, may now be substituted into the first term of

equation (9) for the lift. The second term in equation (9) is zero
27

because th w d6 vanishes as a consequence of the slenderness. The

O .
result for the 1ift of an afterbody of a slender wing-body combination
is found to be

2 2
L = 2gqa Al + Az (l + —g) - ZRl( - __‘1‘_...) -2 (b + 1 )tan'l ( l) (21)
Ua b b \'b ‘ 4

The 1ift of a cylindrical afterbody for the limiting case where
the vortex sheet is displaced sufficiently far from the afterbody
that the downwash induced by the wing at the base of the afterbody is
negligible (w,/Ux » 0) is compared in figure 2 with the 1ift of a

slender wing-body combination with no afterbody. The assumption of
small R/b- is violated in the region where the radius of the body
approaches the semispan. However, the 1ift of the afterbody approaches
zero in this region and since the 1ift given by equation (21) also goes
to zero, equation (21) may be considered a good approximation to the
1ift over the complete range. The 1lift of the wing-body combination

is obtained from reference 4 and 1s presented as the ratio of the 1lift
of the combination to the 1lift of a pointed low-agpect-ratio wing. The
1ift of the wing is

b2
= 2 —_— 22
Cr ar (22)
Combinations of bodies. - Because the linearized differential

equation of motion is assumed to apply, the solution for a combination
of bodies is a linear superposition of the solutions for the bodies
alone and for the interference effects between the bodies. The boundary
condition to be satisfied is that the normal velocity at the surface

of the bodies is zero.

In order to determine the interference 1ift for the bodies in
combination it is necessary to know the disturbance one body produces
on the other. In particular, the upwash and pressure field of one
body contribute to the 1lift of the other body. The interference pres-
sure Tield can be computed from the interference upwash field by
integration of the irrotationality condition

X

dz - ox

to determine 1U; the pressure is obtained from equation (3).
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Computation of interference upwash

Several methods may be used to calculate the upwash field generated
by a body at zero angle of attack and at angles of attack. For a
body at zero angle of attack the method of reference 8 may be applied
to determine the upwash. The velocity potential for the supersonic
flow about a body at zero angle of attack is given by

X-Br
f(E)&
X = - (23)
‘g A/ (x - £)2-p2r2

where f£(x) is the local strength of the source distribution. The
integral expression for the upwash is

= il_!_rl_ﬁ fx— : f'(E)(x - E)AE (24)

o ,\l(x - £)2 - p2r2

A first approximation for the source strength of a slender body is

£(x) = UR % (25)

Equation (24), with the source strength given by equation (25), can be
integrated directly for a given body.

An analogous procedure may also be applied for nonzero angle of
attack; that is, the slender-body value of g(x) (equation (12) with
W o= O) for a given body is substituted into the integral expression for
the upwash

sino vff-ﬁr g' (£)(x - E)2aE . cogze t[$-8r g(E)(x - E)ak
re v, Wl(x _ )2 -2 T “I(X _ £)2 - per?
(26)

and the integration is performed without letting the radius approach

zero as before. The result is thus dependent on Mach number, whereas
the upwash computed by the slender-body approximation (equation (15)

with w = 0) is not.

W= -

A more accurate evaluation of the distribution functions f£(x)
and g(x) is required for bodies not necessarily slender. For such
bodies a method is presented in references 3 and 9 for evaluating the
upwash by a stepwise procedure, and the stepwise procedure is extended
to open-nose bodies in reference 10. For a parabolic body, a comparison

2367
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is presented in the EXAMPLES section of the incremental upwash due to
angle of attack as computed by slender-body theory (equation (15} with
W= O), by the more accurate stepwise procedure of reference 3, and by
the intermediate procedure of using the slender-body approximation for
g(x) in the integral expression for the upwash.

Lift due to interference upwash

The calculation of the portion of the 1ift on a slender
body due to the known upwash field w from another body is similar to
the afterbody problem in that the upwash varies along the body. The
1lift due to w 1is obtained in the same menner except that @ = O.
The upwash in each transverse plane is assumed constant and equal to
its value at the center line. The lift is then given by equation (10)
with
9, =Ua 22 sin 6
2 Ua Re

a?d 2%

f wdb =0

0

according to slender-body theory. The 1ift is thus

L = 2qad, gﬁ (27)
¢4

The same result is obtained for an open-nose body in a varying upwash
field if the body is quasi-cylindrical (dR/dx = O) near the lip.

The internal 1ift for an open-nose body of length substantially
greater than f$ +times the diameter with supersonic flow at the inlet
is found from momentum consideration to be

L = 200,

provided there are no internal losses and the flow is discharged at

the free-stream static pressure. Generally this will not be the case
and terms must be included to correct for the internal axial forces.

The 1lift acts essentially at the nose and the internal 1lift for an
open-nose body in a varying upwash field is obtained simply by replacing
the angle of attack by the ratio of the upwash to free-stream velocity
at the nose. Thus the internal 1ift is
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1
L = 2a e QA (28)

In this analysis it is assumed that the portion of the 1lift of a
body that results from the upwash generated by a second body due to
the presence of the first body is negligible; in other words, only the
primary interference effects are considered. In the section EXAMPLES
the secondary interference effects are examined for s cylinder-cylinder
combination.

Buoyant 1lift due to interference

The buoyant portion of the lift of a body due to the variable
pressure field from another body is obtained from the second integral B
of equation (5). Expanding the x-perturbation veloeity u of the
pressure field in a Taylor's series about the horizontal plane through
the center line of the body in question yields

_ E (Z - Zo)2 52-{1-

(29)

where Z0 is the z-coordinate of the center line of the body. The

terms in equation (29) involving even derivatives do not contribute to
the 1ift, because they are symmetric about the z = z, plane. If it

(z - 20)° /3% 51
310 (8z3>z=zo« = - ZO) (§;>

Z==ZO

is assumed that

then that part of the E—velocity which contributes to the 1ift is

approximately
- du du
u=(z-zo)<—-) =Rsin6()
aZ Z=ZO .gz- Z=ZO

With the aid of the irrotationality condition du
expression becomes oz

, the previous

¥

E=Rsine(a—7’)
0% z=2

2367
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Inserting the value of u 1into the expression for the buoyant 1ift
(term B in _equation (5)) and integrating with respect to € yield,
with w = w(x),

aX Z"-‘ZO

Xz .
B = -2-%5 f R (@) ax © (30)
Xl ’

If the body is a cylinder or a quasi cylinder, the buoyant force due
to the pressure field is

———

B=2 (-—--—-—
qAa % " To | (31a)
or

Yo W
C ) = m(-zl -1 31b
(L B Uo Ua (310)

where A 1is the mean cross-sectional area.

Equations (30) and (31) were obtained by expanding u in a
Taylor's series; hence they are not valid in regions where a discon-
tinuity in the u-velocity is present such as occurs, for example, at
the intersection of the lip shock from an open-nose body with another
body. The buoyant force, however, may be determined by applying equa-
tion (30) or (31), as the case may be, a suitable distance behind the
intersection; then the buoyant force on the excluded area, associated
with the shock, is evaluated separately and added thereto. The buoyant
force associated with the shock is approximated herein by integrating
the pressure as if it acted on the projected area (see following sketch})
of the intersection of the shock with the body on the plane normal to
the plane passing through the center lines of the bodies, and then
resolving the force in the 1ift direction.
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A -

L—Pro jected
area

Tt is assumed that u and w are constant over the shaded surface
area in the preceding sketch and have the values appropriate to the
center line point P immediately behind the shock. This assumption
implies that the body radius is relatively small compared with the
separation of the bodies. For a slender body, the projected area is
an ellipse with axes R and PBR. By virtue of the assumption on u,
the effective pressure acting on the area is constant, having the value
given at the center line on the downstream side of the shock and zero
on the upstream side. The value of the pressure on the downstream side
of the shock is determined in appendix C using the same procedure as
that used in reference 11 for the case of the zero angle of attack.

The pressure coefficient is

&p .22 R oin g 32
5 5\ o (32)

where the‘subscript 0 refers to the open-nose body. Since the projec-
ted area on which this pressure acts is BnRz, the buoyant force due to
the discontinuity in u at the shock intersection with the body is

R _. 2
= - 204[=— sin“6 33
(20L)s V - o (33)

2367
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Equation (33) together with equation (30} or (31) (which apply beyond
the shaded region in the sketch) yields the total buoyant lift when a
discontinuity in the u-velocity is present.

If the body is a cylinder or a quasi cylinder in the disturbed
region of the pressure field so that equation (31b) may be used, the
expression for the buoyant 1ift with the 1ift due to the wave dis-’
continuity is given by

2 2
O
B U U

where X is the projected area on which the shock pressure acts and
Wy is the upwash immediately downstream of the wave. But for weak

waves the flow deflection and pressure coefficient are related by

—
—— TR e BN e——p——— o—t——

where A\ 1is the flow deflection angle through the wave. Hence the
contribution of the wave to the buoyant 1lift will be zero if

_AE = B sin 6, (34)
R

If the effective projected area is as assumed in the sketch, the rela-
tion (34)vis obtained. Thus, for this case, the correct buoyant 1lift
is obtained by applying equation (31) with w; = O.

EXAMPLES
Lift of Cone-Cylinder Body

The 1ift of the cone part of the body as given in reference 3 is

cosh~1 2% ,
¢, =2all - P (35)
2
ZaAlEY -1+ cosh"l X
BR Y\ BR BR

where x 1is the length of the cone. The lift of the cylindrical ,
aftersection may be obtained from equation (19) with ¢, equal to the

potential at the base_of the cone and @5, the slender-body value
(equation (14) with w = 0). The potential @, on the body is

]
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-3(—'\’3-‘-2 l-cosh:LX

R R R UaR sin 6 (36)
\/ 1+ cosh'
BR

Substituting equation (14) with w = O and equation (36) into equa~
tion (19) and combining the result with equation (35) yield the 1ift
of the cone-cylinder which, expressed in coefficient form based on the

area of the cylinder, is

cosh~1 X

O = 2a (1 + BR (37)

3&\’(3&)2 -1 4+ cosh~1 X
BR V\BR BR

In figure 3 the 1ift of the cone-cylinder and the 1lift of a cone
are plotted as a function of the parameter x/BR As would be expected,
the 1ift of the cone and the cone-cylinder approach the slender-body
value as the cone angle decreases.

Interference Lift Between Two Cylinders in Combination

The 1ift of two semi-infinite cylinders of the same radius mounted
in the vertical plane and starting at the same streamwise coordinate
is computed to obtain some information concerning the magnitude and
the method of computation of the interference 1lift between bodies.
There is no loss in generality if the cylinders are assumed to be in
the vertical plane, and the computation is somewhat shorter. Also,
if a symmetrically mounted vertical strut joins the bodies, the strut
carries no 1lift and produces no significant interference.

The 1ift of one cylinder in the presence of the upwash field from
the other cylinder is computed from equation (27). In figure 4 the
upwash at various distances from a cylinder in the vertical plane as
computed by the method of reference 10 is presented. Near the lip,
values are improved by the method given in appendix C. For a short
cylinder-cylinder combination, the appropriate value of the upwash to
be used at the base would be the value given by figure 4. However, the
upwash approaches the slender-body value rather rapidly downstream of
the 1lip shock. In this example, therefore, the slender-body upwash

Ez = - chRz/zO2 is used. The 1lift due to the upwash field in coef-

ficient form and based on the cross-sectional area of the cylinder is

L9CS
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2 ' ,
R
Cp, = - 2a = (38)
20

where 2z, 1s the distance between the center lines of the cylindefs.

The interference 1ift given by equation (38} (which may be regarded
as the first iteration of the total interference lift) can be considered
to result from a certain distribution of doublets along the axis of the
body. This doublet distribution produces an upwash field as though
(in slender-body approximation) the upper body were moving in the nega-

tive z-direction with velocity aU zOZ/Rz. The upwash induced at the
lower body due to this motion at a distance zg below the center line
of the upper body is a fraction zy2/R2 of this. Thus the 1ift of the

lower cylinder in the presence of the upwash from the upper cylinder
due to the presence of the lower cylinder is given by

4

Cp = 20 2 - (39)
Z
0

The complete solution for the 1lift due to the upwash for both cylinders
is then

RZ R4 RG n+l RZn
¢, = - 4a - + - . e e -1 — e e
L ( 2 47 .8 + (-1) L 2n

0

|

- -0 0 (40)
1+ B '

2
20

The validity of this equation deteriorates as z. diminishes because

0
of the neglect of the gradient in upwash aeross each body. In the

limiting case when the cylinders are touching (R/zo = 1/2), equa-

tion (40) is certainly invalid quantitatively, but the behavior of the
iterations is probably qualitatively correct For this limiting case
equation (40) becomes

C. = - 4a ':-L'—'-:'L--i'—l—-...)
L 4 16 64

i
1

‘:’ a (41)
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The magnitude of the terms of higher order than Rz/zo2 for the contig-
uous case is 5 percent of the external 1ift of the cylinder alone. An

exact value for the upwash interference 1ift at small separation Zg; within

the framework of slender-body theory, may be found by considering the
two~-dimensional flow around two cylinders. This flow is equivalent to
a doublet external to a cylinder. By use of the method of images
(reference 12), the potential in series form (because each reflected
doublet violates the boundary condition) may be obtained and hence

the 1ift. The result for the interference 1ift is

-
R4 = 8
| . —7 % —5
op, =-4a| B - e+ P - 0 S
202 < _B_?_) (1@_2) (1_3_RE+3%_>
2 2 2 4
B 20 20 2 20 _1

(42)

For the contiguous case the interference lift due to the upwash field is

C, = - 4o l--l-+-l--—l-+...+(-1n+l—-£-—-—--...
L [4 9 16 25 ) (n + 1)2 (43)

- 4a(1 - 72/12)

n

The magnitude of higher-order terms for this method is about 7 percent
of the external 1lift of the cylinder alone. The difference between
equations (43) and (41) is due to the fact that in obtaining equa-
tion (40) the boundary condition is only approximately satisfied.

A procedure analogous to that used to obtain equations (40) and
(42) mey be applied to obtain expressions for the buoyant 1ift. The
buoyent 1lift is equal to the interference lift due to upwash. For this
example, the internal interference 1ift 1s zero because the noses of
the cylinders are ahead of the disturbance filelds.

The total 1ift of the combination, including the internal 1ift
for the isolated cylinders, with terms of higher order than Rz/zo2

R2
ch = 8a - = (44)
20

neglected, is

L9gz2
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The interference 1lift may be expressed in terms of an interference ratio

dOLc ) dCLb dCLi

, = i 3o R® (45)
acr, a0y, 2%
I i

where C is the 1ift of the isolated bodies.

Ly,

It is interesting to note that the interference 1lift ratio for the
case of the cylinders in the horizontal plane would be

i = = (46)

Interference Lift Between Two Parabolic Bodies in Combination

In this example, the interference 1ift between two identical
parallel parabolic bodies mounted in the vertical plane and at incidence
angle o with respect to the free-stream is computed.

The upwash distribution about a parabolic body due to angle of
attack may be computed either by slender-body theory, by the stepwise
procedure of reference 3, or by the intermediate procedure of using the
slender-body approximation for the g(x) in the integral expression
for the upwash (equation (26)). The equation of a parabolic body in
dimensionless form is

B = % (1 - x*)x* (47)
where
R*  BR/1
F* fineness ratio/p = F/p = Z/ZBRmaX
*  x/1

1 length of body pointed at both ends
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The upwash in the vertical plane through the body center line obtained
by the intermediate procedure for the parabolic body defined by equa~-
tion (47) is

L9¢3 *

(48)

where ZO* = Bzo/l. This equation is applicable between the Mach cones
from the pointed nose and end of the body; that is,

¥* < < I
Zp" € X S 1+ zO

The upwash as computed by slender-body theory is

W 2 _ _ ¥y *2
Lo R . 41 -x)7x for 0< x¥ <1 (49)
Ua zO2 ¥ *2

F ZO

The comparison of equations (48) and (49) with the upwash computed
using reference 3 for F¥ = 7.5 and 12.5 and z.¥ = 0.075 and 0.125,
respectively, is presented in figure 5. It is seen that the upwash
given by equation (48) varies in the same manner with respect to magni-
tude and position as that obtained using the method of reference 3.
Since the computation with equation (48) is faster, equation (48) is
used herein for the interference 1lift calculations due to the upwash
from the interfering body. The sign of the interfering upwash acting
at the base of the primary body is important because it determines
whether or not the incremental 1lift due to interference upwash is
favorable. The upwash given by slender-body theory will always have
the same sign for a given plane of symmetry, whereas the upwash given by
both of the more exact methods changes sign (see fig. 5). TFor the
calculation of the buoyant 1ift, the simpler equation (49) (rather

than equation (48)) has been used in equation (30) because, for inte-
grated values, the difference between the various curves is unimportant.

In figure 6 a contour plot of the interference ratio is presented -
for the case where the distance between the center lines of the bodies
varies from zo* = 0.075 to 2z® = 0.150 and one body moves downstream

from x® =0 to x¥=0.3 with respect to the other parabolic body.
. The length of each body is 0.81. The maximum 1ift curve slope occurs
when the body axes are farthest apart and one body is at the most
rearward station of the positions considered.
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Interference Lift Between Open-Nose Body and a
Parabolic Body in Combination

A contour plot of the interference ratio at a Mach number of 2 is
presented in figure 7(a) for an open-nose body mounted above or below
and downstream of a parabolic body. The bodies are parallel and at
incidence angle o with respect to the free stream. All pertinent
dimensions are shown in the figure. In figure 7(b) another open-nose
body identical to the first is symmetrically added to the configuration
and the interference ratio is presented for this arrangement.

For these plots, the upwash distribution about the parabolic body
was computed from equation (48) with F equal to 15. For the open-nose
body the upwash was determined using the method of reference 10. For
the computation of the buoyant force, equation (51) was used with the
mean radius determined by the amount of volume of the body in the dis-
turbed field at a particular position. The 1lift of the isolated com-
ponen?s was obtained using slender-body theory (equation (18) with
w=0).

Figure 7(a) indicates that for the positions considered, the
maximum lift-curve slope occurs when the open-nose body is at the
farmost aft and outboard station from the parabolic body. The same
result is noted in figure 7(b) for the parabolic body - two open-nose
body configuration.

As a matter of general interest, the interference 1lift at zero
angle of attack is presented in figure 8 for the one open-nose con-
figuration. When the open-nose body is mounted above the parabolic
body, the 1ift is negative; and when it is mounted below, the 1ift has
the same magnitude but the opposite sign. In the calculation of the
1ift the upwash about the parabolic body was determined from reference 8,
and the upwash about the open-nose body was determined from reference 10.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, December 17, 1951
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APPENDIX A
SYMBOLS

The following symbols are used in this report:

A cross~-sectional area of body of revolution, nRz
b maximum semispan

B buoyant 1ift (second integral in equation (5))
Cr 1ift coefficient, 1ift/qAs

F fineness ratio of parabolic body of revolution,

length/maximum thickness

Fo»Gp functions of x and r (defined in appendix B)

f(x) local strength of source distribution

g(x) derivative of local strength of doublet distribution

i interference 1lift ratio

L 1ift due to angle of attack and upwash (first integral in
equation (5))

1 length of body pointed at both ends

M Mach number

n integer

Ap deviation of local pressure from free-stream pressure

Bp prineipal part of Ap contributing to lift

q free-stream dynamic pressure, % pU2

R radius of body

Rpax maximum radius of body

r radial coordiante, yz + z&

38 wing area

2367
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t integration variable

) U free-stream velocity
u,w perturbation velocities in x- and z-directions, respectively
u,v,w perturbation velocity components due to interfering body

- .
3 v resultant velocity
VR’Vb’VX components of resultant velocity in r-, 6-, and x-directions,
respectively

X,¥,2 Cartesian coordiantes
a angle of attack
B cotangent of Mach angle of free stream, \/Mz -1
T adiabatic exponent

: ] tangential coordiante, sin’l(z/r)

- E integration variable (x-coordinate of sources or doublets)
p density
® total perturbation potential for primary body
) portion of & contributing a nonzero value of 1lift
X portion of & corresponding to zero angle of attack
¥ portion of & due to sidewash
Subscripts:
0 coordinate measured from axis of body generating disturbance

field

1 start of body

. 2 base of body
b bodies alone

c bodies in combination
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due to interference
wing

Subscript coordinates indicate partial differentiation with respect
subscript variable.

Primes denote ordinary differentiation.

2367
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APPENDIX B
FORM OF VELOCITY POTENTIAL FOR BODY OF REVOLUTION AND PRINCIPAL
PART OF PRESSURE CONTRIBUTING TO LIFT

The total perturbation potential for the primary body is assumed
to satisfy the governing equation for small-disturbance, isentropic

irrotational flow

2
B ®yy ~&yy - 85, =0 (1)

The general solution of equation (Bl} as given in reference 13 is

o0

$(x,u,0) = i cos m 6 Fy(x,r) + Z sin m 6 Gyfx,r)

m=0 , m=0

where

e (% %)m j‘o £ (x - pr cosh t)d£ \ |

cosh-1 X

Br

x-Br

- ('117 S'ar)m f e fmS;d_g 822

=
=]
]

0] T

o
Gp = ™0 (i _é_)m ’ gn(x - Br cosh t)dt

-1 X

Br

, m XPr _
R

o

cosh

The linearized boundary condition on the body is

(@r)mf{ = - (Ua + Tj)sin 6 -vcos 6+U % (B3)
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This boundary condition is correct to the order a dR/dx or (dR/dx)z
Because of the form of the boundary condition, the total potential
must be given by

q>=sin6G1+coseFl+FO
(B4)
=@ + V¥ +x

(with v = v(x), ¥ = w(x)). The part of the pressure contributing to
the 1ift will be obtained to the order of accuracy of the linear partial
differential equation and the linearized boundary condition. The

exact form of the pressure coefficient is given by the compressible

Bernoulli edquation
T

2\ | ¥-I
. E Qi+ 1-1’-) -1 (85)
q TMZ 2 U2

Expanding equation (BS) yields the following approximate expression
for the pressure coefficient:

2
AD vZ\ P Ve
—(U—)“<a") (ve)

This equation is correct to the second order in 1 - VZ/UZ. The net
velocity at any point is

V2 = Ve + V2 + Vg2

where
Vg =U+u+&, (B7a)
Vg = (U + w)sin 6 + V cos 6 + &p (B70)
— - %0
Vo= (Ua + W)cos 6 + v sin 6 + — (B7¢c)

Substituting equation (B3) into (B7b) yields the net velocity in the
radial direction of the body

dR
Vo = U = B8
R . (B8)

2367
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Substituting equations (B8), (B7a), and (B7c) into the first term in
equation (B6) yields, on the body, :

q U UZ U U U dx
E—(a.+y-)cosesin6+z—sin29+2 a+x>cos6—§+
U U U2 U Ur
— & $.2
2Y sin 6 —2 + 4 (39)

The following terms in the approximate pressure coefficient yield
nonzero values for 1ift when equation (B4) is substituted into (B9),
the indicated differentiation is performed, the result is substituted
into the 1ift integral

X5 27
Lift = - q f f %I—’ sin @8 R 46 dx (B10)
Xl 0}

and the integration with respect to 6 is performed:

20, 20U 20.% = =2
Bp - X _Tx M Z2u ut (Bll)
q U U2 v U g

A1l other terms integrate to zero. If the next term in the expansion
of the pressure coefficient (equation (B6)) is included, by the same
procedure
28 T - -
op 2% , Pem 2. gm  pPal

= = - (B12)
a U y2 U2 U U2

where the terms of higher order than those appearing in equation (B11)
have been neglected. It can be shown from slender-body theory that
®. /U, ¥ /U, G/U, and Xx/U are of order « dR/dx or (dR/dx)Z.

Neglecting terms of higher order than a dR/dx or (dR/dx)2 in
equation (B12), where « and dR/dx are considered to be small and
of the same order, yields

(B13)
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The component potentials ¥ and X thus contribute only higher-
order terms to the 1ift., _The surviving component in equation (B4) 1s o, -
which is due to o and w alone; the sidewash v does not enter.

Comparison of equations (Bl2) and (B13) indicates that at high
Mach numbers some of the neglected terms may become as large as those
retained.

2367
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APPENDIX C
PERTURBATION VELOCITY COMPONENTS IN VICINITY OF LIP
SHOCK FROM AN INCLINED OPEN-NOSE BODY

The method used herein to estimate the velocity components in the
vicinity of the 1lip shock from an open-nose body at angle of attack is
similar to the technique used in reference 11 for the linearized
treatment of the 1lip shock from an open-nose body at zero angle of attack.
The boundary condition on the open-nose body in integral form may be
written

(e,.) = - #n 8 J’X-BR@;'(E)(X - ¥)%ax = - Ua sin 6 (c1}
T r=R RZ ,\/(x " 5)Z - peR? '

where the 1lip is located at x = BR. In the vicinity of the lip,

X - PR is very small compared with PR and thus equation (c1) reduces

to

X-BR
Ua‘VggR _ f _g'(E)ak (c2)
0

B Ak - BR - &

This is in the form of Abel's integral equation for the unknown function
g'(x); the solution, according to reference 14, 1s

1(x) = —0% 4 [2BR
8'(x) = % 2 (c3)

when R 1is. assumed to be apprbximately constant in the vicinity of the
lip. Introducing equation (¢3) into the expression for the upwash
(equation (26)), restricting consideration to the vicinity of lip shock

Cx - Br very much less than Br), and integrating yield

X = - sin0 1R + cosZe (X - ) 4/5 (ca)
Ua r Br r

In the integration of the last term in equation (26), the function g(x)
is given by the integral of equation (C3), which is

e(x) = 3‘-’5-2@ Vi+e (c5)
b1

with the constant C equal to zero because g(0} = O.
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The u-velocity component in the vicinity of the shock is obtained
by inserting equation (CS) into the integral expression for the u-
velocity and neglecting x - Br compared with pBr as before. The result is

_%=Ap=-_2_gsin9\/§ - (cse)

At the lip shock the upwash is zero when calculated by the method of
reference 10. 1In figure 3 the upwash given by equation (C4) is joined
by a dashed line to the values given by the method of reference 10
downstream of the lip shock. The slope of the dashed line is about the
same as that given by reference 10, thus indicating the validity of the
method of this appendix.
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dCL/du,
ac

da

1.0 ==
\
\Wing-body, reference 4

9 \

. \ \

8 \\ \\\ ///

7 Wing-body - afterbody y
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.6 I
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' I

“ / \
3 |
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-1 Afterbody, equations (21) and (2}),/

2 \\ 7
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R/b

. Flgure 2. - Lift-curve slope ratio_for wing-body - afterbody

combination with wz/Uoc = 0,
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L Cone, equation (35)
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1.8

1.7
6 7 8 9 10 11 12

x/BR

Figure 3. - Comparison of 1ift of cone-cylinder with 1lift
of cone,
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Method of reference 3

——— Intermediate procedurse,
equation (48)

\ —=-— Slender-body theory,

/ ol
/I// \\ equation (49)

o
‘\\
\\
N
>
=~

- w/Ua

w

R~
—

=

\
/, \\\
1 \\\\\
0 \\ ; —
-.1
(a) Bzy/1, 0.075; ¥/, 7.5.
.12
AL BN
i /7 \\T\
A
.08 "/, A
\ <
06 / \\\
. 7 S
g / AN\
< .04 :
= \
. N
02 7 \\ N\
7 A\
Al NI
-
~ /
-.02 <;7J
04 S
-. 1 i
0 .2 4

.5 .8 1.0 1.2
x/Z .

(v) Bzy/1, 0.125; F/B, 12.5.

Figure 5. - Comparison of three methods of computing upwash in vertical plane
generated by a parabolic body at angle of attack.
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Bzo/l

37

.15

0
10 T~ N, \
. \
—-——"——_——— "\
‘// —— - N
in 40 350 20 -10 O
2
.05 B
0 .1 2 .3
Figure 6. - Contour plot of interference ratio for two-parabolic-body
configuration.
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Figure 8, - Contour plot of interference lift coefficient at zero angle
of attack for open-nose body mounted above parabolic body.
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